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Objectives

• Understand that there can be very different ways 
to solve the same problem.

• Understand that these ways have different benefits:

– Simplicity to describe and understand

– Difficulty to implement and maintain

– Time cost and space cost to run



Algorithms vs Programs

• An algorithm  describes how to do something.
– It is a precise description.

– It always works, or specifies exactly when it fails.

– It terminates on all inputs.

• A program describes the steps to do something.
– It may or may not give an algorithm.

– Concerned with practicalities, such as the names of
storage locations, whether a loop or recursion is used, ...



(An Aside)

• Strictly speaking those are imperative programs.

• There are also declarative programs that describe
properties of the answer.

• Then an algorithm
in the programming language implementation 
provides the steps to do the computation.

• E.g. Lex, Prolog, VHDL, YACC



Problem 1

• We will look at a very simple problem and examine
two algorithms to solve it.  

• The problem we will look at is so simple, you have
been doing it since you were about 10 years old.

• The problem is to compute x to the power n.



The Way You Know

• Algorithm:  Multiply x by itself n-1 times.

• Program 1: 

double power(double x, int n) {
double pow = 1;
while (n-- > 0) pow *= x;
return pow;

}

This is valid Java and valid C.

• Program 2:

double power(double x, int n) {
if (n == 0) return 1;
return x * power(x, n-1);

}

// Or:  return n == 0 ? 1 : x*power(x, n-1);



How Much Does It Cost?

• Q: If each product costs $1, how much does it cost
to compute  power(3.0, 100) ?
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How Much Does It Cost?

• Q: If each product costs $1, how much does it cost
to compute  power(3.0, 100) ?

A:  $99.

• The cost is  n-1 multiplications. 

• That’s a lot.  Can we do better?



Thinking About The Problem

• Are there any special values that can be 
computed faster?

• If so, we could compute one of those and then
adjust the result...

power(b, n) = b × ... × b × power(b, special_n)



A Family of Special Values

• Consider   x^(2*k).

• This is  (x^k)^2.



A Family of Special Values

• Consider   x^(2*k).

• This is  (x^k)^2.

• Can be computed with half  the number of operations:

t = power(x,k);   pow = t*t



A 2nd Algorithm: Repeated Squaring

• If n is even, then compute  the square of x^(n/2).

• If n is odd, then n-1 is even.  Compute x*x^(n-1).

• Stop at n = 0.  x^0 = 1. 



Program for Repeated Squaring

double power(double x, int n) {

if (n == 0) 
return 1;

else if (n % 2 == 0) {

double t = power(x, n/2);
return t*t;

}
else {

double t = power(x, n/2);
return x*t*t;

}

}



Another Pgm for Repeated Squaring

double power(double x, int n) {

double pow;
if (n == 0)

pow = 1;
else {

double t = power(x, n/2);
pow = t*t;
if (n % 2 == 1) pow *= x;

}
return pow;

}

• Advantages:  No code duplication.  Single exit point.



How Much Does It Cost?

• Worst case:   
– 2 multiplications at each step.

– Each step divides the number by 2.

– The number of steps is therefore  log[2](n)
Need to round that up to the next integer.

– Cost is proportional to log[2](n)



Why log[2](n) ?

• Suppose we had a problem of size n = 1,000,000.
• Then solved it in terms of a pb of size    100,000.
• Then solved that in terms of a pb of size    10,000.
• Then solved that in terms of a pb of size     1,000.
• Then solved that in terms of a pb of size        100.
• Then solved that in terms of a pb of size          10.
• Then solved that in terms of a pb of size            1.

• At each stage we remove a zero.

• There are log[10](n) zeros.

• This is true whether this is 10 base ten or 10 base two.

• Splitting the problem size in half at each stage => log[2](n)



A Third Algorithm    (Just in case you wondered)

• Use the fact that   x^n  =  exp(log(x^n))  =  exp(n * log(x))

• Use standard numerical approximation techniques to 
compute  exp(x)  and log(x).

• This involves computing a quotient where both 
the numerator and denominator are polynomials of x.  
(Hermite-Pade approximants).

• These do not compute exp and log, but are approximations.

• It gives an answer that is correct to needed # of digits (e.g. 17)

• Fixed cost.   Same for all n.


