
Algorithms

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

Objectives

• Understand that there can be very different ways
to solve the same problem.

• Understand that these ways have different benefits:

– Simplicity to describe and understand

– Difficulty to implement and maintain

– Time cost and space cost to run

Algorithms vs Programs

• An algorithm describes how to do something.
– It is a precise description.

– It always works, or specifies exactly when it fails.

– It terminates on all inputs.

• A program describes the steps to do something.
– It may or may not give an algorithm.

– Concerned with practicalities, such as the names of
storage locations, whether a loop or recursion is used, ...

(An Aside)

• Strictly speaking those are imperative programs.

• There are also declarative programs that describe
properties of the answer.

• Then an algorithm
in the programming language implementation
provides the steps to do the computation.

• E.g. Lex, Prolog, VHDL, YACC

Problem 1

• We will look at a very simple problem and examine
two algorithms to solve it.

• The problem we will look at is so simple, you have
been doing it since you were about 10 years old.

• The problem is to compute x to the power n.

The Way You Know

• Algorithm: Multiply x by itself n-1 times.

• Program 1:

double power(double x, int n) {
double pow = 1;
while (n-- > 0) pow *= x;
return pow;

}

This is valid Java and valid C.

• Program 2:

double power(double x, int n) {
if (n == 0) return 1;
return x * power(x, n-1);

}

// Or: return n == 0 ? 1 : x*power(x, n-1);

How Much Does It Cost?

• Q: If each product costs $1, how much does it cost
to compute power(3.0, 100) ?

How Much Does It Cost?

• Q: If each product costs $1, how much does it cost
to compute power(3.0, 100) ?

A: $99.

How Much Does It Cost?

• Q: If each product costs $1, how much does it cost
to compute power(3.0, 100) ?

A: $99.

• The cost is n-1 multiplications.

• That’s a lot. Can we do better?

Thinking About The Problem

• Are there any special values that can be
computed faster?

• If so, we could compute one of those and then
adjust the result...

power(b, n) = b × ... × b × power(b, special_n)

A Family of Special Values

• Consider x^(2*k).

• This is (x^k)^2.

A Family of Special Values

• Consider x^(2*k).

• This is (x^k)^2.

• Can be computed with half the number of operations:

t = power(x,k); pow = t*t

A 2nd Algorithm: Repeated Squaring

• If n is even, then compute the square of x^(n/2).

• If n is odd, then n-1 is even. Compute x*x^(n-1).

• Stop at n = 0. x^0 = 1.

Program for Repeated Squaring

double power(double x, int n) {

if (n == 0)
return 1;

else if (n % 2 == 0) {

double t = power(x, n/2);
return t*t;

}
else {

double t = power(x, n/2);
return x*t*t;

}

}

Another Pgm for Repeated Squaring

double power(double x, int n) {

double pow;
if (n == 0)

pow = 1;
else {

double t = power(x, n/2);
pow = t*t;
if (n % 2 == 1) pow *= x;

}
return pow;

}

• Advantages: No code duplication. Single exit point.

How Much Does It Cost?

• Worst case:
– 2 multiplications at each step.

– Each step divides the number by 2.

– The number of steps is therefore log[2](n)
Need to round that up to the next integer.

– Cost is proportional to log[2](n)

Why log[2](n) ?

• Suppose we had a problem of size n = 1,000,000.
• Then solved it in terms of a pb of size 100,000.
• Then solved that in terms of a pb of size 10,000.
• Then solved that in terms of a pb of size 1,000.
• Then solved that in terms of a pb of size 100.
• Then solved that in terms of a pb of size 10.
• Then solved that in terms of a pb of size 1.

• At each stage we remove a zero.

• There are log[10](n) zeros.

• This is true whether this is 10 base ten or 10 base two.

• Splitting the problem size in half at each stage => log[2](n)

A Third Algorithm (Just in case you wondered)

• Use the fact that x^n = exp(log(x^n)) = exp(n * log(x))

• Use standard numerical approximation techniques to
compute exp(x) and log(x).

• This involves computing a quotient where both
the numerator and denominator are polynomials of x.
(Hermite-Pade approximants).

• These do not compute exp and log, but are approximations.

• It gives an answer that is correct to needed # of digits (e.g. 17)

• Fixed cost. Same for all n.

